Lecture Mar 31: Cubic equations
Course announcenarts

- HO 1 due Friday (\mathbb{F}_{3} notation now explained) p pirn $\mathbb{F}_{p}=\pi / p \pi=Z /(p)$ (for any field $k, k[x,]_{\}}=r i n g$ of poly in x dy thengoted west th p

$$
E_{x}: \frac{x}{\zeta} \in k(x, y)
$$

Notation: $k\langle x, y\rangle=$ non-com. ing $\quad x y \neq y x$
$k(x, y)=$ field of rational polywarids $\frac{f(x, y)}{g(x, y)}$ where $f_{1} g \in k[x, y]$ ard $g \neq 0$.

- Office hours
- Today 3-4 per (zoom link in email)
- Reftectien *1 due tola
- Canvas, not gradescope
- Quires on Monday (1st ore is Aped 12) Total of 7 quires
$\oint 1$. Review of quadratic eqns
How car we solve
$f(x)=a x^{2}+b x+c=0$
"Completing the squar"
- If $a=0$, this is linear. We know

So we can assume apo
If $C=0$, also know, here to solve,

$$
\frac{d f}{d x}=2 a x+b
$$

Disusing out by a, we can assume equation is

$$
x^{2}+b x+c
$$

Minluax occurs at $\frac{-b}{2}$

- If $b=0$, also easy

$$
\begin{aligned}
& t \quad b=0, \\
& x^{2}+c=0 \Rightarrow x= \pm \sqrt{-c}
\end{aligned}
$$

Can we arrange somehow for $b=$?
Linear substitution
$x \sim 1 x+\alpha$ for content α
$x^{2}+b x+c \leadsto(x+\alpha)^{2}+b(x+2)+c=$
$x^{2}+2 a x+\alpha^{2}+b x+b a+c=$
$x^{2}+(2 \alpha+b) x+\alpha^{2}+b a t c$
For this to be 0 , need $\alpha=\frac{-b}{2}$
But the geometry of the paroles tore us this!

$$
\begin{aligned}
\text { told us this! } & =x^{2}+\frac{b^{2}}{4}+\frac{-b^{2}}{2}+c \\
-1 f\left(x-\frac{b}{2}\right) & =x^{2}-\frac{b^{2}}{}+c
\end{aligned}
$$

$$
=x^{2}-\frac{b^{2}}{4}+c
$$

know $y= \pm \sqrt{\frac{b^{2}}{4}-c}$ is a soho to g
$\rightarrow x=\frac{-b}{2} \pm \sqrt{\frac{b^{2}}{4}-c}$ sol for f

$$
\begin{array}{r}
x=\frac{-b}{2} \pm \sqrt{\frac{b^{2}}{4}-c} \text { sol for } f= \\
\\
x^{2}+b x+c
\end{array}
$$

To solve $a_{2} x^{2}+a_{1} x+a_{0}=0$

Babylonian's 2000 BC completely eliscarbal complex sols a) absurd.
$\frac{\text { \$2. Cubic equation }}{\text { How do we solve }}$

$$
a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0 ?
$$

- If $a_{3}=0$,
- We con assume $a_{3} \neq 0$. \&
therefore even $a_{3}=1$
Cubic

There is a real root'
Linear subaritu $x \rightarrow x+2$

$$
\begin{aligned}
& \text { Liner subasith }(x+\alpha)^{3}+a_{2}(x+\alpha)^{2}+a_{1}(x+\alpha)+a_{0} \\
& =\frac{x^{3}+\left(3 \alpha+a_{2}\right) x^{2}+(1) x}{2=-a_{2} / 3}+()
\end{aligned}
$$

Co assume

$$
f(x)=x^{3}+a_{2} x+a_{0}=0
$$

Cannot after linear change get $a_{i}=0$
New tacks: Substitute

$$
\begin{aligned}
& x=y-\frac{a_{1}}{3 y} \\
\sim & f(x)=\left(y-\frac{a_{y}}{\partial y}\right)^{3}+a_{1}\left(y-\frac{a_{1}}{3 y}\right)+a_{0}=0 \\
= & \left(y^{3}-a_{1} y+\frac{a_{1}}{\beta y}-\frac{a_{1}^{3}}{27 y^{3}}\right)+a_{y}\left(y-\frac{a_{1}}{\beta y}\right) \\
= & y^{3}-\frac{a_{1}^{3}}{27 y^{3}}+a_{0}=0
\end{aligned}
$$

Multiply by y^{3}

$$
\begin{aligned}
& =y^{b}+a_{0} y^{3}-\frac{a_{1}^{3}}{27}=0 \\
& =\left(y^{3}\right)^{2}+a_{0}\left(y^{3}\right)-\frac{a_{1}^{3}}{27}=0
\end{aligned}
$$

Quadratic formula

$$
\begin{aligned}
& y^{3}=\frac{-a_{0}}{2} \pm \frac{\sqrt{a_{0}^{2}}+\frac{a_{1}^{3}}{27}}{} \\
& \sim y=\sqrt[3]{\frac{-a_{0}}{2} \pm \sqrt{\frac{a_{0}^{2}}{y}+\frac{a_{1}^{3}}{27}}}
\end{aligned}
$$

4 Then need to go back and $x=y-\frac{a_{1}}{3 y}$
, Keep ir mind that there a 3 cube roils $\omega=e^{\text {riti/3 }}$ then $\omega^{3}=1$

